You are here

Теория вероятности и матем.статистики


sova105
Дата: Понедельник, 12.12.2011, 03:51 | Сообщение # 1

1.По цели ведется стрельба из орудия. Средняя дальность полета снаряда составляет 1000 м.Найти долю выпускаемых снарядов, дающих перелет до 60м,если среднее квадратичное отклонение полета снаряда равно 30м.
2.Вероятность того, что покупатель, вошедший в магазин, приобретет обувь размера 41=0,25.Найти с вероятностью, превышающей 0,95,границы, в которых должно находиться число покупателей, купивших обувь 41 размера, из каждой 1000 человек, вошедших в магазин.
3.При наборе телефонного номера абонент забыл последнюю цифру, но помнит, что она нечетная. Составить закон распределения числа попыток, сделанных абонентом для правильного набора номера.
4.Наудачу подбрасывают 3игральные кости. Определить вероятность того, что на трех костях выпадут разные грани.


payac
Дата: Вторник, 13.12.2011, 17:57 | Сообщение # 2

4. Насколько я понимаю, число благоприятных исходов - 6*5*4 (6 вариантов для первого броска, 5 - для второго, 4 - для третьего). Общее число исходов - 6^3. Тогда вероятность, по классическому определению, равна (6*5*4)/(6^3)=20/36=5/9

про первое вот интересно, распределение случайной величины равномерное или нормальное.


sova105
Дата: Вторник, 13.12.2011, 18:29 | Сообщение # 3

спасибо!


Shuler
Дата: Вторник, 13.12.2011, 23:24 | Сообщение # 4

Задача 3.
1) Нечетных цифр 5 штук, верояность набрать нужную цифру из 5-ти P(1) = 1/5 = 0,2.

2) При повторном наборе, вероятность которого 4/5, "неудачную" цифру абонент набирать не будет, их остается 4, вероятность найти "нужную" 1/4. Значит вероятность P(2) = (4/5) * (1/4) = 1/5 = 0,2.

3) Вероятность того, что нужно "угадывать" цифру в третий раз (4/5) * (3/4) = 3/5 (или же 1 - (Р(1) + Р(2)) = 1 - (1/5 + 1/5) = 3/5, что то же самое). Выбирать абонет будет из 3 оставшихся цифр, вероятнось набрать нужную 1/3. P(3) = (3/5)*(1/3) = 1/5 = 0,2.

4) Думаю, далее сюжэт понятен: P(4) = (4/5)*(3/4)*(2/3)*(1/2) = 1/5 = 0,2.

5) Ну и на последней, 5-ой попытке угадывать цифру не придется, непроверенной останется одна. Вероятность такой ситуации P(5)=1 - (P(1)+P(2)+P(3)+P(4))= 0,2.

Занимательно... Число попыток бедет иметь "раномерное дискретное" распределение с вероятностью 0,2:
x I p(x)
1 I 0,2
2 I 0,2
3 I 0,2
4 I 0,2
5 I 0,2


sova105
Дата: Среда, 14.12.2011, 13:31 | Сообщение # 5

Огромное спасибо!!!


payac
Дата: Среда, 14.12.2011, 17:10 | Сообщение # 6

Задача 2.
по условию, n=1000, p=0.25, q=1-p=0.75
2Ф(e*sqrt(n/pq))=0.95 (0,95 - заданная нам вероятность отклонения)
подставим числа, получим:
Ф(е*73,0297)=0,475
из таблицы значений Ф (функции Лапласа), найдем, что Ф(1,96)=0,475.
Значит, е*73,0297=1,96, откуда е=0,0268
Тогда с вероятностью 0,95 отклонение относительной частоты числа покупателей 41 размера от вероятности 0,25 удовлетворяет неравенству:
|x/1000 - 0.25|<=0.0268
-0.0268<= x/1000 - 0.25<=0.0268
223.2 <= x <= 276.8

Итак, число покупателей 41 размера из каждой 1000 человек с вероятностью не меньше 0,95 лежит в пределах от 224 до 276 человек.


sova105
Дата: Среда, 14.12.2011, 17:20 | Сообщение # 7

payac, Спасибо!!!
Очень Вы меня выручаете, у меня на завтра сдача курсовой...на решение задач совсем времени не остается.
Еще раз ВСЕМ БОЛЬШОЕ СПАСИБО!!!


payac
Дата: Суббота, 17.12.2011, 13:34 | Сообщение # 8

задача 1.
если случайная величина Х - дальность полета снаряда распределена нормально, то решение следующее:
Р(alpha<X<beta)=Ф((beta-a)/sigma)-Ф((alpha-a)/sigma),
Ф - функция Лапласа, а - мат.ожидание Х (а=1000), alpha =1000, beta=1060, sigma - среднеквадратичное отклонение Х (sigma=30).
Р(1000<X<1060)=Ф((1060-1000)/30)-Ф((1000-1000)/30)=Ф(2)=0,4772
То есть вероятность перелета снаряда до 60 метров равна 0,4772. Значит 4772/10000 всех снарядов дают перелет до 60 метров.

Undefined
author: 
admin
Категория: